fastreid.config

Related tutorials: ../tutorials/configs, ../tutorials/extend.

@author: l1aoxingyu @contact: sherlockliao01@gmail.com

Config References

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Convention about Training / Test specific parameters
# -----------------------------------------------------------------------------
# Whenever an argument can be either used for training or for testing, the
# corresponding name will be post-fixed by a _TRAIN for a training parameter,
# or _TEST for a test-specific parameter.
# For example, the number of images during training will be
# IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be
# IMAGES_PER_BATCH_TEST

# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------

_C = CN()

# -----------------------------------------------------------------------------
# MODEL
# -----------------------------------------------------------------------------
_C.MODEL = CN()
_C.MODEL.DEVICE = "cuda"
_C.MODEL.META_ARCHITECTURE = "Baseline"

_C.MODEL.FREEZE_LAYERS = ['']

# MoCo memory size
_C.MODEL.QUEUE_SIZE = 8192

# ---------------------------------------------------------------------------- #
# Backbone options
# ---------------------------------------------------------------------------- #
_C.MODEL.BACKBONE = CN()

_C.MODEL.BACKBONE.NAME = "build_resnet_backbone"
_C.MODEL.BACKBONE.DEPTH = "50x"
_C.MODEL.BACKBONE.LAST_STRIDE = 1
# Backbone feature dimension
_C.MODEL.BACKBONE.FEAT_DIM = 2048
# Normalization method for the convolution layers.
_C.MODEL.BACKBONE.NORM = "BN"
# If use IBN block in backbone
_C.MODEL.BACKBONE.WITH_IBN = False
# If use SE block in backbone
_C.MODEL.BACKBONE.WITH_SE = False
# If use Non-local block in backbone
_C.MODEL.BACKBONE.WITH_NL = False
# If use ImageNet pretrain model
_C.MODEL.BACKBONE.PRETRAIN = True
# Pretrain model path
_C.MODEL.BACKBONE.PRETRAIN_PATH = ''

# ---------------------------------------------------------------------------- #
# REID HEADS options
# ---------------------------------------------------------------------------- #
_C.MODEL.HEADS = CN()
_C.MODEL.HEADS.NAME = "EmbeddingHead"
# Normalization method for the convolution layers.
_C.MODEL.HEADS.NORM = "BN"
# Number of identity
_C.MODEL.HEADS.NUM_CLASSES = 0
# Embedding dimension in head
_C.MODEL.HEADS.EMBEDDING_DIM = 0
# If use BNneck in embedding
_C.MODEL.HEADS.WITH_BNNECK = True
# Triplet feature using feature before(after) bnneck
_C.MODEL.HEADS.NECK_FEAT = "before"  # options: before, after
# Pooling layer type
_C.MODEL.HEADS.POOL_LAYER = "avgpool"

# Classification layer type
_C.MODEL.HEADS.CLS_LAYER = "linear"  # "arcSoftmax" or "circleSoftmax"

# Margin and Scale for margin-based classification layer
_C.MODEL.HEADS.MARGIN = 0.15
_C.MODEL.HEADS.SCALE = 128

# ---------------------------------------------------------------------------- #
# REID LOSSES options
# ---------------------------------------------------------------------------- #
_C.MODEL.LOSSES = CN()
_C.MODEL.LOSSES.NAME = ("CrossEntropyLoss",)

# Cross Entropy Loss options
_C.MODEL.LOSSES.CE = CN()
# if epsilon == 0, it means no label smooth regularization,
# if epsilon == -1, it means adaptive label smooth regularization
_C.MODEL.LOSSES.CE.EPSILON = 0.0
_C.MODEL.LOSSES.CE.ALPHA = 0.2
_C.MODEL.LOSSES.CE.SCALE = 1.0

# Focal Loss options
_C.MODEL.LOSSES.FL = CN()
_C.MODEL.LOSSES.FL.ALPHA = 0.25
_C.MODEL.LOSSES.FL.GAMMA = 2
_C.MODEL.LOSSES.FL.SCALE = 1.0

# Triplet Loss options
_C.MODEL.LOSSES.TRI = CN()
_C.MODEL.LOSSES.TRI.MARGIN = 0.3
_C.MODEL.LOSSES.TRI.NORM_FEAT = False
_C.MODEL.LOSSES.TRI.HARD_MINING = True
_C.MODEL.LOSSES.TRI.SCALE = 1.0

# Circle Loss options
_C.MODEL.LOSSES.CIRCLE = CN()
_C.MODEL.LOSSES.CIRCLE.MARGIN = 0.25
_C.MODEL.LOSSES.CIRCLE.GAMMA = 128
_C.MODEL.LOSSES.CIRCLE.SCALE = 1.0

# Cosface Loss options
_C.MODEL.LOSSES.COSFACE = CN()
_C.MODEL.LOSSES.COSFACE.MARGIN = 0.25
_C.MODEL.LOSSES.COSFACE.GAMMA = 128
_C.MODEL.LOSSES.COSFACE.SCALE = 1.0

# Path to a checkpoint file to be loaded to the model. You can find available models in the model zoo.
_C.MODEL.WEIGHTS = ""

# Values to be used for image normalization
_C.MODEL.PIXEL_MEAN = [0.485*255, 0.456*255, 0.406*255]
# Values to be used for image normalization
_C.MODEL.PIXEL_STD = [0.229*255, 0.224*255, 0.225*255]

# -----------------------------------------------------------------------------
# KNOWLEDGE DISTILLATION
# -----------------------------------------------------------------------------

_C.KD = CN()
_C.KD.MODEL_CONFIG = ""
_C.KD.MODEL_WEIGHTS = ""

# -----------------------------------------------------------------------------
# INPUT
# -----------------------------------------------------------------------------
_C.INPUT = CN()
# Size of the image during training
_C.INPUT.SIZE_TRAIN = [256, 128]
# Size of the image during test
_C.INPUT.SIZE_TEST = [256, 128]

# Random probability for image horizontal flip
_C.INPUT.DO_FLIP = True
_C.INPUT.FLIP_PROB = 0.5

# Value of padding size
_C.INPUT.DO_PAD = True
_C.INPUT.PADDING_MODE = 'constant'
_C.INPUT.PADDING = 10

# Random color jitter
_C.INPUT.CJ = CN()
_C.INPUT.CJ.ENABLED = False
_C.INPUT.CJ.PROB = 0.5
_C.INPUT.CJ.BRIGHTNESS = 0.15
_C.INPUT.CJ.CONTRAST = 0.15
_C.INPUT.CJ.SATURATION = 0.1
_C.INPUT.CJ.HUE = 0.1

# Random Affine
_C.INPUT.DO_AFFINE = False

# Auto augmentation
_C.INPUT.DO_AUTOAUG = False
_C.INPUT.AUTOAUG_PROB = 0.0

# Augmix augmentation
_C.INPUT.DO_AUGMIX = False
_C.INPUT.AUGMIX_PROB = 0.0

# Random Erasing
_C.INPUT.REA = CN()
_C.INPUT.REA.ENABLED = False
_C.INPUT.REA.PROB = 0.5
_C.INPUT.REA.VALUE = [0.485*255, 0.456*255, 0.406*255]
# Random Patch
_C.INPUT.RPT = CN()
_C.INPUT.RPT.ENABLED = False
_C.INPUT.RPT.PROB = 0.5

# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
_C.DATASETS = CN()
# List of the dataset names for training
_C.DATASETS.NAMES = ("Market1501",)
# List of the dataset names for testing
_C.DATASETS.TESTS = ("Market1501",)
# Combine trainset and testset joint training
_C.DATASETS.COMBINEALL = False

# -----------------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------------
_C.DATALOADER = CN()
# P/K Sampler for data loading
_C.DATALOADER.PK_SAMPLER = True
# Naive sampler which don't consider balanced identity sampling
_C.DATALOADER.NAIVE_WAY = True
# Number of instance for each person
_C.DATALOADER.NUM_INSTANCE = 4
_C.DATALOADER.NUM_WORKERS = 8

# ---------------------------------------------------------------------------- #
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()

# AUTOMATIC MIXED PRECISION
_C.SOLVER.FP16_ENABLED = False

# Optimizer
_C.SOLVER.OPT = "Adam"

_C.SOLVER.MAX_EPOCH = 120

_C.SOLVER.BASE_LR = 3e-4
_C.SOLVER.BIAS_LR_FACTOR = 1.
_C.SOLVER.HEADS_LR_FACTOR = 1.

_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.NESTEROV = True

_C.SOLVER.WEIGHT_DECAY = 0.0005
_C.SOLVER.WEIGHT_DECAY_BIAS = 0.

# Multi-step learning rate options
_C.SOLVER.SCHED = "MultiStepLR"

_C.SOLVER.DELAY_EPOCHS = 0

_C.SOLVER.GAMMA = 0.1
_C.SOLVER.STEPS = [30, 55]

# Cosine annealing learning rate options
_C.SOLVER.ETA_MIN_LR = 1e-7

# Warmup options
_C.SOLVER.WARMUP_FACTOR = 0.1
_C.SOLVER.WARMUP_ITERS = 1000
_C.SOLVER.WARMUP_METHOD = "linear"

# Backbone freeze iters
_C.SOLVER.FREEZE_ITERS = 0

# FC freeze iters
_C.SOLVER.FREEZE_FC_ITERS = 0


# SWA options
# _C.SOLVER.SWA = CN()
# _C.SOLVER.SWA.ENABLED = False
# _C.SOLVER.SWA.ITER = 10
# _C.SOLVER.SWA.PERIOD = 2
# _C.SOLVER.SWA.LR_FACTOR = 10.
# _C.SOLVER.SWA.ETA_MIN_LR = 3.5e-6
# _C.SOLVER.SWA.LR_SCHED = False

_C.SOLVER.CHECKPOINT_PERIOD = 20

# Number of images per batch across all machines.
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.SOLVER.IMS_PER_BATCH = 64

# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.TEST = CN()

_C.TEST.EVAL_PERIOD = 20

# Number of images per batch in one process.
_C.TEST.IMS_PER_BATCH = 64
_C.TEST.METRIC = "cosine"
_C.TEST.ROC_ENABLED = False
_C.TEST.FLIP_ENABLED = False

# Average query expansion
_C.TEST.AQE = CN()
_C.TEST.AQE.ENABLED = False
_C.TEST.AQE.ALPHA = 3.0
_C.TEST.AQE.QE_TIME = 1
_C.TEST.AQE.QE_K = 5

# Re-rank
_C.TEST.RERANK = CN()
_C.TEST.RERANK.ENABLED = False
_C.TEST.RERANK.K1 = 20
_C.TEST.RERANK.K2 = 6
_C.TEST.RERANK.LAMBDA = 0.3

# Precise batchnorm
_C.TEST.PRECISE_BN = CN()
_C.TEST.PRECISE_BN.ENABLED = False
_C.TEST.PRECISE_BN.DATASET = 'Market1501'
_C.TEST.PRECISE_BN.NUM_ITER = 300

# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
_C.OUTPUT_DIR = "logs/"

# Benchmark different cudnn algorithms.
# If input images have very different sizes, this option will have large overhead
# for about 10k iterations. It usually hurts total time, but can benefit for certain models.
# If input images have the same or similar sizes, benchmark is often helpful.
_C.CUDNN_BENCHMARK = False